,

COVID-19 Treatment Research at TSSG Research Centre

The global pandemic (Covid-19 or SARS-COV-2) has so far killed thousands of people and continues to threaten many more in the very near future. Daily routines have changed for most of the worlds citizens while economies and stock rates plummet the world over. This unified enemy is like nothing the modern world has seen before and, while the negatives mount, many are taking solace in the positives. One such positive is the outstanding community effort from international researchers.

As we are sometime away from administering a vaccine, researchers from various disciplines are working at full capacity around the globe to develop novel solutions to diagnose and treat patients suffering from the virus, as well as preventing from spreading it further.

TSSG are among the broad team of global researchers contributing to the battle against this invisible threat. Their multi-disciplinary research model has the flexibility to re-focus projects with the potential of creating innovative solutions to treatment, prevention and assisting the often-difficult social distancing measures currently in place.

By applying their extensive expertise in information communications technology (ICT), researchers in TSSG are working together to develop both short as well as long term solutions for COVID-19. By incorporating their experience in molecular and bio-nano communications, sensor technology and blockchain, the team in TSSG along with partners in USA and Finland are working on six possible solutions to various issues. Read how TSSG researchers are Integrating COVID-19 technology with society here.

Dr. Sasitharan Balasubramaniam, Director of Research in TSSG, praises his team “We are incredibly proud of how fast our researchers have refocused their strategy and joined together in an attempt to contain this virus. Solving these challenges requires rapid responses and creative solutions and we are hopeful that many of our novel concepts will produce promising results.”

The COVID-19 related projects TSSG researchers are investigating are just the beginning when you consider that studies such as these take years to see results. Many of these initiatives, particularly the research into possible treatments are a long-term effort to overcome not just this virus, but possible illnesses to come.

COVID-19 Treatment Research

This virus knows no boundaries. Breathing difficulties and shortness of breath are a key indicator of the illness and fatality rates are high among people with underlying health issues such as asthma. Reducing the long-term effect of a patient diagnosed with COVID-19 is paramount. The number of patients leaving hospital to continue their recovery at home without the need for ventilators or oxygen is ever increasing however researchers have asked the question: What does this mean for the health of the lungs? Does this have a lasting effect? Experts from TSSG, Rochester Institute of Technology (RIT), USA, and the University of Tampere (UTA), Finland are investigating.

Treating Lung Tissue Damage due to COVID-19

Recent analysis of patients suffering from COVID-19 have found that stem cells can be used to repair lung damage as well as control the immune system to suppress cytokine storms (body starts to attack its own cells rather than the virus). Based on this, this specific research is looking at a new delivery mechanism of stem cells encapsulated into a polymer container into the lungs via a ventilator. Once in the right location, the nanoscale devices can be broken down using ultrasound signals emitted externally from outside the body. This will allow precise delivery of the stem cells to the damaged location within the lungs therefore aiding cell and subsequently patient recovery. The nanodevice will remain dormant in the lungs in the event a patient is re-infected.

Researchers: Bruna Fonseca (TSSG), Dr. Michael Barros (University of Tampere, Finland), Dr. Sasitharan Balasubramaniam (TSSG), Prof. David Borkholder (Rochester Institute of Technology, USA), Dr. Mark White (WIT) and Dr. Lee Coffey (TSSG, PMBRC)

(A) Illustrates MSC deposited into the alveoli of the lungs, and (b) illustrates the ultrasound signals emitted to break the polymer casing of the nanodevice.

Molecular Communication modelling of COVID-19 in the Respiratory System

When the COVID-19 virus enters the respiratory system, it uses the Angiotensin Converting Enzyme 2 (ACE2), found in the respiratory system, to bind and enter cells. Once COVID-19 has entered the cell the proteins within the virus will block the innate response of the immune system and replicate before being released into the body.

Depending on different factors such as the compromised immune systems and underlying health conditions, the severity of the COVID-19 infection could vary from mild to critical.

Molecular communication model of COVID-19 virus propagation in the respiratory system.

Researchers in TSSG are studying the unpredictability of the virus within the respiratory system to identify the varying levels of infections in patients using an emerging paradigm knows as molecular communications. Molecular communication uses theory from communication engineering and networks to enables us to characterise biological communication processes. In other words, the theory will allow researchers to build a mathematical model to characterise the spread of the COVID-19 virus in the respiratory system. The model created by TSSG primarily characterises the propagation of virus particles through airway tracks and their deposition on the airway surfaces in the respiratory system. This is modelled by considering the flow of air in the upper (e.g., trachea) and lower (e.g., alveoli) regions of the respiratory system, respectively.  This aim of researchers is that this model would give insights to possible treatments for COVID-19 and future life-threatening viruses by designing vaccines depending on the level of infection in different organs.   

Researchers: Dixon Vimalajeewa (TSSG), Prof. Donagh Berry (Teagasc), Dr. Sasitharan Balasubramaniam (TSSG)

Clinical Data as a Service platform (CDaaS)

Figure 1 Overall workflow of the Machine Learning (ML) system in CDaaS

The global problem of antibiotic resistance is fast becoming one of the major scientific issues of modern times. The development of new antibiotics is slow and difficult work, but bacterial resistance is decreasing our arsenal of existing drugs posing a catastrophic threat as ordinary infections become untreatable. This is a particularly evident in the current COVID-19 pandemic. Currently, there is no efficient and fast technical solution to overcome this phenomenon, rather the diagnosis is based on clinical examination in a doctor’s clinic or in hospital, in addition to some biochemical tests in labs which might take up to a few days to get the results.

CDaaS uses artificial intelligence (AI) and machine learning technology to provide infection identification of either bacterial or viral causes, based on samples provided to the CDaaS system by the Point of Care (PoC) givers i.e. GPs or consultants. The CDaaS (Clinical Data as a Service) platform gives GPs, surgeons and third parties access to synthesised diagnostic medical data allowing them to determine an early and accurate infection diagnosis solution.

The heart of CDaaS is an AI machine learning-based system that provides the critical analysis for submitted biomarker samples, i.e. blood pressure, body temperature, based on multiple indicators within the samples.

CDaaS focuses on extending the market around lab-on-a-chip devices while enabling the creation of a mobile application that can assist medical doctors in assessing the nature of infections in the GP practice or hospital setting. This will be imperative to the rate of diagnosing patients with COVID-19 thus reducing the spread of the virus.

Researchers: Martin Tolan (TSSG), Yahya Almardeny (TSSG), Peter Scanlon (TSSG) Frances Cleary (TSSG).

This post was originally published on the TSSG website