CAPPA Launches New Website

The Centre for Advanced Photonics and Process Analysis (CAPPA) is delighted to launch its new – look website at www.cappa.ie. The site has been revamped to reflect the group’s broader activities combining both the fundamental science and the industry focused research strands of the centre. The new website also reflects the ever-expanding capabilities at CAPPA detailing new industry and academic research that the centre is involved in.

The new site is designed to be a one – stop portal for visitors from both industry and academia. Content is broadly divided into two sections; the Industry section is intended to provide the most relevant information for industry visitors looking to collaborate with CAPPA through the Technology Gateway, while the Research section is primarily targeted at visitors from the academic community.

A new funding section outlines supports provided to carry out research and development with CAPPA. CAPPA can help in assessing the most suitable funding programme for the proposed research and has been successful in securing funding to assist start – ups, SME’s and MNC’s as part of their R&D roadmap.

The news section of the website will act as an information hub for the research and development areas the centre is currently working on as well as new trends within the photonics market. Summaries and examples of the current and previous research projects we are delivering is available via a series of short and informative flyers available for download here.

We hope you enjoy the new website and you can still contact us directly via the contact page here or via email here.


TSSG offering tech solutions to business and industry in a very different, post-lockdown world

An internationally-renowned technology research centre with over 80 staff specialising in areas from Future Health and Intelligent Transport Systems to Agri-Tech and Cybersecurity is reaching out to industry, businesses and entrepreneurs bidding to service existing clients and attract new consumers with new needs, habits and concerns in a post-lockdown world.

The move by the TSSG Technology Gateway team comes in the wake of their comprehensive Industry Insights Report investigating the impact of COVID-19 on our economy and what the future will look like in a post-COVID world. The Technology Gateway team at the Telecommunications, Software and Systems Group (TSSG) have already nurtured and supported global players such as ESBNetworks, nearForm and Immersive VR Education and are anxious to continue to support industry within and outside of the region.

TSSG in partnership with Enterprise Ireland have been building technological solutions for industry across the south east and beyond as well as helping combat much of the disruption caused by COVID-19. The world-wide pandemic highlights the importance of businesses being agile and flexible, being able to innovate to meet dynamic demands brought about by interruptions, disruptions as well as rapidly changing consumer needs and habits.

Together, the TSSG Technology Gateway team is giving businesses and organisation of all shapes and sizes the opportunity to access decades of knowledge and hands-on industry expertise and the expert staff want to hear now from those with an idea, with a problem that requires a tech solution or from those with a prototype that they’re struggling to get to the next level. Brands and retailers need to invest in technology from ecommerce and digital payments through to artificial intelligence (AI), blockchain and virtual reality (VR) to attract consumers with new needs, habits and concerns.

They’re also reaching out to industries, confident the multi-skilled, expert team can resolve just about any problem with a tech build, TSSG Technology Gateway Manager, Miguel Ponce de Leon explained.

“Architects design your house and show you how you can take a number of ideas and innovations and combine them to make a beautiful home. A building contractor builds it. We are architects for digital businesses. TSSG is a special microcosm. Because we do European as well as national commercial projects, we can marry the two to bring the knowledge from research into real world digital applications.”

Business Development Executives, Carol Faughnan and Jim Prendergast, encouraged businesses and individuals to engage with them now. The team can be contacted on techgateway@tssg.org

Carol Faughnan said: “It is my job to match cutting edge research with industry. I look at a company’s research and development (R&D) needs and align this with areas of expertise in TSSG such as Software Development/AR&VR/Mobile Pervasive Applications/Data Analytics and IoT. I help companies to access funds from sources such as Enterprise Ireland so they can bring their idea from concept to reality and avail of our researchers through Innovation Vouchers.

“At TSSG, we are always looking to the latest and greatest. Our researchers are always experimenting. Areas such as Smart cities will be of great interest. Using 5G as a gateway into 6G will be an area that will be investigated. With the birth of Covid-19 and future of work at play, Future Health will be to the core,” she added.

Jim Prendergast meets with businesses and helps facilitate their collaboration with the world-class, cutting-edge research happening at TSSG. “We are seeing a growing trend in Healthcare applications, Precision Agri as well as in the Energy sector. Our test-bed networks mean that we can grow the number of projects using wireless networks such as LPWA, Terahertz and 5G. Some of the researchers are already using 6G in their research.

“Our telecommunications work also extends to Bio Nano telecommunications, using biology as a network to transmit signals within the body. I see a lot of potential in the emerging use cases in Smart Cities. With growing population and increasing traffic congestion, the need for city managers to access data sets to help manage the city is more imperative than ever,” he added.

To view the report Click Here

This post was originally published on the TSSG website

Irish Food Tech: a Technology Gateway Cluster

The Irish Food Tech Cluster is a consortium of Enterprise Ireland’s Technology Gateways operating within the food and beverage technology sector. The cluster provides a range of expertise for companies who are looking to access research and development within these areas.

The cluster can connect industry with researchers in a wide selection of areas that include bioprocessing, food for health, process control and packaging, amongst many others.

The Irish Food Tech team consists of 7 Technology Gateways Managers and a team of Business Development researchers and engineers who collaborate with companies of all sizes nationwide, to deliver a wide range of expertise within the Gateway structure, in turn supporting and aiding the development of research and innovation in industry.

Irish Food Tech Cluster Gateways

APT Gateway is based in Athlone IT and provides solutions for polymer materials and plastics processing to companies within the food sector on scales from short-term consultancy to multi-year collaborative projects. Projects can involve design and prototyping of food packaging or investigating packaging failures.

CAPPA Gateway is based at Cork Institute of Technology and provides photonics solutions to companies within the food sector on scales from short-term consultancy to multi-year collaborative projects. Projects can involve examination of specific food products or investigating food process capabilities to improve their efficiency.

Design+ Gateway is based in Carlow IT and offers innovative solutions for industry using a design approach for packaging and brand communication.

MET Gateway is based in GMIT and offers a range of services within medicinal nutrition technologies such as food analysis and testing, human interventional trials and product development and optimisation.

MiCRA Gateway is based in TU Dublin – Tallaght Campus and offers a range of bioanalytical, material and food characterisation, microbiological and food safety and chemical analytical services for the food sector.

PMBRC Gateway, based in Waterford Institute of Technology, can provide access to the expertise and facilities to deliver technology solutions in product development and food quality to the food industry, in the areas of food formulation, food shelf life and food processing.

Shannon ABC Gateway, based on the IT Tralee and Limerick IT campuses, can provide food and beverage companies with scientific support from raw material to final product.

What can Irish Food Tech offer your company?

Irish Food Tech facilitates your access to the seven specialised centres across the Gateway Cluster, providing assistance and support in delivering near-to-market solutions and becoming an important extension of your company’s R&D capability.

What supports do we offer?

We offer industry support in the form of various Enterprise Ireland funding initiatives such as Innovation Vouchers, Feasibility Studies and Innovation Partnerships. You can also access the gateway cluster via direct consultancy. More information on available supports can be found here.

Each gateway centre within the cluster has access to a dedicated Gateway Manager and a team of specialised business development engineers to help with your company’s individual needs. The Irish Food Tech Cluster is available to SMEs, large indigenous companies and multinationals.

What’s the next step?

For more information on how the cluster can support your company, contact the Irish Food Tech cluster support office or follow us on Twitter to keep up with the latest industry and cluster news.


CAPPA Purchases new Supercontinuum Laser and Scientific Grade Camera

CAPPA Technology Gateway recently purchased a new optical set–up containing four components, a supercontinuum (SC) laser, a spectrometer and two scientific-grade cameras. The supercontinuum laser, SuperK Evo, is a white light laser based on extremely reliable fibre laser technology.  Designed for maintenance-free operation, the laser is very stable and boasts a long lifetime. The spectrometer, Andor Shamrock 500i, is based on the Czerny-Turner optical design and pre-aligned to the camera. The scientific grade cameras, Andor iXon 855 and Andor iDus 1.7mm, cover the wavelengths from visible to near-infrared. With this new system, CAPPA will have the ability to carry out more detailed research across a variety of different sectors including pharmaceuticals, medical device, photonics, food and beverage. This equipment was funded as part of the Enterprise Ireland Capital Equipment funding call.

The SC laser source is unique as it provides a laser-quality beam, sharp and intense, over a broad spectral range, equivalent to a fluorescent bulb. As a result, the SC laser can be used for both absorption and excitation characterisation. Another significant advantage of the source is its size, smaller than a desktop computer, making it extremely portable and adaptable to a plethora of techniques. The spectrometer consists of dual detector outputs to couple both scientific-grade cameras, with a motorised triple grating turret. The three gratings are configured as follows: 1) ruled grating, 300 l/mm, 1700 nm blaze, 2) ruled grating, 600 l/mm, 500 nm blaze and 3) ruled grating, 1200 l/mm, 500 nm blaze, these enabling the generation of high- and low-resolution spectra. The first scientific grade camera contains a charge-coupled device (CCD), with a 512 x 512-pixel array, and spectrograph. The CCD provides high sensitivity, enabling detection of low light levels, along with high temporal resolution (microsecond), needed for some fluorescence applications. The second scientific-grade camera contains an InGaAs sensor optimised for near-infrared, with a 512 x 1-pixel row at a 25 mm pitch and a Peak QE of > 85%. Together, the combination allows for the construction of an abundance of microscopy and spectroscopic techniques, including VIS/NIR absorption spectroscopy, fluorescence spectroscopy and optical coherence tomography and imaging techniques via reflection, absorption or fluorescence, on a compact benchtop set-up.

The main purpose of the set – up will be as a stepping stone to providing affordable automated characterisation solutions which companies can take back on – site. Characterisation is preformed regularly on high – end expensive commercial equipment based at CAPPA. However, if the procedure is required regularly, returning to CAPPA routinely is not a realistic solution, neither is purchasing the high – end commercial equipment. Consequently, simpler specific setups are built at CAPPA to meet the needs of the routine measurements. A delay in this set comes from determining appropriate light sources and detectors remotely. The SC–CCD combination will remove this delay, allowing for the construction of benchtop VIS/NIR absorption, fluorescence, optical coherence tomography and imaging setups.

The combination will also allow an increase in sensitivity compared to commercial equipment by the construction of cavity enhanced absorption spectroscopy or intensity/frequency modulation setups. These purpose-built solutions can significantly increase sensitivity compared to other all-purpose commercial equipment. The SC–CCD can be used in applications such as fluids in the biomedical and pharmaceutical industry, in the environmental sector, particles/powders in environmental and pharmaceutical sectors, surfaces/coatings in biomedical and pharmaceutical, solids for materials characterization and light sources.

If you are interested in learning more about the facilities available at CAPPA, you can contact them here.


Meet the Team… Jim Prendergast TSSG Technology Gateway

In our ‘Meet the Team’ series, we bring you a range of staff interviews from across the Technology Gateway Network.

Today we introduce Jim Prendergast, Business Development Executive at TSSG Technology Gateway. Jim started his current role in the middle of the pandemic and gives his view on joining the TSSG team whilst working remotely, innovation and how TSSG can help your company.

1. Tell us a bit about the TSSG Technology Gateway

TSSG is the ICT research and development wing of WIT and employs over 90 software developers, engineers, UX/UI designers and PhD researchers. Dedicated to research in specific focus areas such as Networks & Cloud Computing, VR/AR, Artificial Intelligence, Machine learning, Data Mining and Software System Architecture and Engineering, the TSSG is one of the leading ICT research institutions in Ireland.  We are one of the most successful ICT research centres in Ireland securing funding of €120 million under EU Programmes

2. Describe your role?

It is my job to facilitate the collaboration between cutting edge research and disruptive industry at the TSSG Technology Gateway in collaboration with Enterprise Ireland. I bring clients and companies from concept to reality through expertise at the TSSG in ICT & IoT innovation. I enable business’ to avail of our expertise through funding mechanisms such as Enterprise Ireland Innovation Vouchers. Through an ever-increased networking and engagement strategy I also connect with established companies for contract R&D programmes, which are ever present in TSSG.

3. How did you find starting a new job during a pandemic/working remotely?

For many, working remotely came as something new. It was a strange feeling coming from a day to day on the road face to face into a digital platform. I noticed pretty quickly how businesses adapted to the “new normal”. My approach was that everyone was in the same boat and working together, so it didn’t faze me. I do look forward to meeting my colleague in the office when we reopen and welcoming future companies into the TSSG labs.

4. What’s unique about the Gateway and its presence in the South-East?

Our relationship with WIT has grown from strength to strength over the years. Our presence is ever felt, and our aim is to contribute to the south east becoming a leader in the Digital Transformation world. With over 700 project partners, TSSG researchers have their finger on the pulse with new and cutting-edge technologies in the areas of Future Health, Precision Agriculture, Smart Energy, Intelligent Transport Systems & Molecular Communications and Computing. Almost half of the projects currently active in the research centre are direct industry projects working to improve Ireland’s status as a leader in tech start-ups. TSSG delivers innovative ICT solutions to our clients across multiple industries, including Agritech, HealthTech, Smart Cities, Communications and Energy Sectors.

We are transforming how companies operate and compete through our scientifically proven R&D knowledge and expertise that has a direct impact on improving our clients’ bottom line.

Every company must innovate to survive, especially in a post Covid world. If you do not have a Research, Development and Innovation (RD&I) focus TSSG can help you create that focus. If you have an established RD&I function, create an extension of this function with TSSG and we will help you push the boundaries to ensure you stay ahead of the competition and disrupt the marketplace.

 5. How can companies get involved with TSSG?

Get in touch with myself or one of our team; Miguel Ponce De Leon, Technology Gateway Manager and Carol Faughnan, Business Development Executive, and we will listen carefully to what you need, help to carve out a product development roadmap and match you with the right teams and funding supports to get you where you need to be.

You can also get in touch with the team here.

6. What are the main benefits for a company collaborating with TSSG?

I can’t emphasise enough how together is better. Collaborating with industry and our in-house expertise researchers there are resources here at the TSSG that can benefit a company. You can use funding through TSSG to leverage value to your business.

 7. How can you help a company prepare for an innovation project?

At the TSSG we offer clients valuable experience when it comes to ICT projects. We identify a roadmap through our Innovation Sprint, and this outlines the key technical strategy needed for the project ahead. A good start is half the battle & knowing where we need to be at key stages gives the client and TSSG perspective and a positive outlook.

8. What’s the one piece of advice you would give to a company considering an innovation project?

I would have to say understand your niche. A client understanding the market will work in tandem with our expertise who possess high technical skills. This is a key component when developing the product. The more knowledge a business has on their product, the more innovation takes place.

 9. What do you love most about your job?

I get to meet the with so many companies from a wide spectrum. The satisfaction of guiding clients from concept to application is a great feeling. Knowing that I have helped an entrepreneur who will play a significant role in the economy gives me great joy.  Networking and facilitating relationships between industry and research is a huge buzz.

Contact me on LinkedIn or email me at jprendergast@tssg.org to arrange a meeting or have an informal virtual coffee.



PEM secures capital funding to purchase a Materials Testing Equipment Suite

PEM Technology Gateway at IT Sligo is delighted to have been recently successful in attaining capital equipment funding from Enterprise Ireland to purchase a Materials testing equipment suite which will hugely benefit Irish Industries.

The Suite includes:

  • A Gas Displacement Pycnometer – This instrument will be used to determine the true volume and true density of solids and powders.
  • A Universal Hardness Testing System – An automatic desktop Universal Hardness Testing Machine capable of performing a wide range of test forces (up to 250kgf) on different hardness scales including Vickers, Rockwell, Brinell and Knoop.
  • A Micro Hardness Tester – This Instrument will be used to execute Micro Vickers & Knoop Hardness for values within the load range from 10gf to 2kgf. Availability of this equipment would expand our capacity to determine a material’s hardness or resistance to penetration when test samples are exceedingly small or thin, or when small regions in a composite sample or plating need to be measured.
  • A low force benchtop tensile tester – This Instrument will be used to execute low-force Tensile Testing on small components and assemblies, for example, testing of small medical devices which would be very useful given all the medical device manufacturers in the region.

This new suite of equipment will complement the 600kN Tensile tester we received funding for last year, the device will enable companies to test the strength of multiple materials.

PEM will be pleased to offer tensile testing services in the 400-600kN capabilities to Industry. The high capacity universal tensile testing machine will be capable of performing tensile and compression testing, as well as shear, flexure, peel, tear, cyclic and bend tests. The addition of this equipment to the PEM Gateway provides a unique service offering to enable Ireland’s heavy industry in specialist areas, such as:

  • Construction equipment
  • Heavy equipment
  • Automotive & Aerospace
  • Agricultural machinery

Should you have any questions about testing capabilities or if you would like any further information contact the team at PEM.

This article was first published on the PEM website


CAPPA receives €88,000 worth of funding for new equipment

The Centre for Advanced Photonics & Process Analysis (CAPPA) is delighted to announce today that it will be receiving €88,000 worth of funding to purchase a new visible hyperspectral-imaging camera as part of the Enterprise Ireland capital equipment call. Heather Humphries on June 4 2020 announced the €6 million investment in equipment from Enterprise Ireland. CAPPA was one of 37 successful applicants to receive funding out of 105 eligible applications totalling €6 million. The winners were selected through a rigorous evaluation process based on eligibility criteria for the call that included, but was not limited to, a strong track record of industry engagement, a significant industrial need for the new equipment, and space to service and maintain the equipment according to international standards.

Hyperspectral imaging is evolving as a robust, rapid, non-destructive tool for chemical imaging-based quality control and process development and monitoring. Problem focused solutions based on hyperspectral imaging are more cost-effective and robust in comparison to more advanced, sophisticated spectroscopic methods. Development of the optimum method requires a fully featured system initially, after which the method can be transferred to an affordable, less sophisticated, application-focused set up tailored to the customer.

Visible Near infrared Hyperspectral Imaging (400-1000nm) can be used for a wide variety of inspection tasks in agriculture, food processing, medical devices, bio-pharma, medical diagnostics and health care. The visible region is particularly suited to the coloured samples typically found in food and agriculture. Often large companies can lack the expertise in specifying a hyperspectral imaging system. There is often a requirement for method development with aspects such as lighting, spectral bandwidth and spatial resolution. CAPPA will operate as a test bed for different inspection possibilities, and be able to specify the simplest unit that would solve the customer’s problem. This new equipment will provide a modernised and broader offering to CAPPA’s service offering with increased range, specificity and flexibility and enable new offerings such as advanced analysis capabilities, process development, monitoring and optimisation, new product development, quality control and contamination analysis.

You can learn more about the current facilities at CAPPA here and see case studies of the work CAPPA conducted with industries across different sectors here.


WiSAR Receives Research Equipment Investment from Enterprise Ireland

Minister for Business, Enterprise and Innovation, Heather Humphreys TD recently announced the successful applicants of the Capital Equipment Fund administered by Enterprise Ireland through the Technology Gateway and Technology Centre Programmes. 37 successful applicants from across the Third Level Sector have secured over €6 million in funding.

The winners were selected through a rigorous evaluation process. Eligibility criteria for the call included, but was not limited to, a strong track record of industry engagement, a significant industrial need for the new equipment, and space to service and maintain the equipment according to international standards.

Dr. Jim Morrison, Director of the WiSAR Technology Gateway at LYIT, was successful in his application for funding to purchase an 8-axis high precision scanning arm used by industry to scan precision engineering objects enabling accurate 3D modelling from the scans. Eight-axis range of movement will enable complete rotation of the object being measured in real time, meaning that there should be no difficulty reaching around the object, and no need to move the arm into different locations within the process.

Speaking to Donegal Daily Dr. Morrison said that “The scanner allows for very precise measurement of complex objects and will enable industry in the NW to confirm that their designs and processes fit with the highest international quality standards. Companies within NW manufacturing (and across the Technology Gateway network) will now be able to avail of these services from LYIT with the back-up of skilled mechanical engineers from the Dept. of Electronics and Mechanical Engineering.”

The portable equipment will be made available to industry in the North-West through the WiSAR Technology Gateway at LYIT to assist with product inspection for quality control, reverse engineering, and process control.  It is anticipated that the equipment will be available to industry in early 2021.

For further details on the WiSAR Technology Gateway contact Stephen Seawright at info@wisar.ie, 074 918 6462

This post was originally published on the WiSAR website


Meet the Team… Carol Faughnan TSSG Technology Gateway

In our ‘Meet the Team’ series, we bring you a range of staff interviews from across the Technology Gateway Network.

Today we introduce Carol Faughnan, Business Development Executive at TSSG, Waterford Institute of Technology

1. Tell us a bit about the TSSG Technology Gateway

The Telecommunications Software and Systems Group (TSSG) is Waterford Institute of Technology’s (WIT) ICT research wing. We act as a major driver in the emergence of a telecommunications industry globally. We recently acquired the title of one of the most successful ICT research centres in Ireland securing in excess of €100 million under EU Programmes and as part of our remit, we deal directly with industry partners in Ireland via the Enterprise Ireland Technology Gateways, known as TSSG Gateway.

2. Describe your role?

As Business Development Executive at the Gateway I facilitate the engagement between industry partners and the researchers at TSSG. I do a lot of networking and engage with potential clients looking to develop ICT and IoT innovations. I also enable clients to access funding to accelerate this engagement via the Enterprise Ireland Innovation Voucher and Innovation Partnership Programmes. In addition, I engage with a lot of global brands on Contract R&D projects which are ongoing at the Technology Gateway here at TSSG.

3. What’s unique about the Gateway and its presence in the South-East?

TSSG is one of three Gateways in the South East, all based out of Waterford Institute of Technology. Two of the research centres TSSG and PMBRC scooped an award at the Technology Ireland Industry Awards, the most coveted awards ceremony within the Irish technology sector, in 2019. The project, titled ‘Digital DNA Storage Infrastructure of the Future’, involves an infrastructure that supports encoding of digital transformation in DNA, which will lead to a new form of data storage for the future and will pave the way for many projects including in the Agricultural sector.

We have our own Datacentre and Mixed Reality lab on our stand-alone campus which is extremely unique in the sense that it is a one-stop-shop for industry to access knowledge and solutions in advanced mobiles services and service enablers such as:

  • Distributed & cloud-based mobile services
  • Next generation IP based voice and video
  • Virtual and augmented reality services
  • Location, context, smart space and social service enablers
  • Data science, AI and mining

4. How can companies get involved with TSSG?

Get in touch with myself or one of our team; Miguel Ponce De Leon, Technology Gateway Manager and Jim Prendergast, Business Development Executive, and we will listen carefully to what you need, help to carve out a product development roadmap and match you with the right teams and funding supports to get you where you need to be.

5. What are the main benefits for a company collaborating with TSSG?

The benefit of working with the Gateway is that we can offer Government funding supports as a research knowledge provider. If a company is looking to do R&D then it is beneficial for them to work with us both in terms of getting the best available expertise from researchers working on a wide array of global projects and also to leverage value that they get when they access funding through the Gateway and Enterprise Ireland.

6. How can you help a company prepare for an innovation project?

At the TSSG Gateway we can offer insights into niche markets and identify the best way for SMEs collaborate with our researchers. We can help to break down a very large and overwhelming project to maximise the funding available and carve out a product development roadmap. We look beyond the profane and use the latest technologies available to help bring the project to a new level of innovation with a view to disrupting existing industries.

7. What’s the one piece of advice you would give to a company considering an innovation project?

Know your niche and do the market viability study to scope whether the project is going to have a viable industry need prior to investing the funds. Market intelligence on the part of the client is the most important thing in preparing for an innovation project. Our researchers are technical experts with a lot of industry experience. When a client comes to us with potentially disruptive industry knowledge this is the key to a very successful collaboration.

8. What do you love most about your job?

I absolutely love my job. Meeting people and helping them bring incredible ideas to reality through academic collaboration is extremely rewarding. There is a certain chemistry where disruptive industry meets cutting edge research and it is a privilege to represent both equally, and offer funding supports to bring new projects to life.

Contact me on LinkedIn or email me at cfaughnan@tssg.org to arrange a meeting or have an informal virtual coffee.


Meet Ms. Foram Dave: PEM Technology Gateway PhD Student Researcher

Meet Ms. Foram Dave, one of PEM Technology Gateways PhD Student Researcher’s. In this blog post Foram tells us about herself, her studies and her research topic “Laser Transmission Welding of Semi-crystalline Polymers and its Composites”.

Foram believes that the biggest prerequisite for brilliance is the inclination to learn. Only intensive and comprehensive research work in her field of interest will put her on the right track, to gain in-depth knowledge of advanced technology, and to achieve higher academic standards.

Polymer Science is a multidisciplinary area in which physics, biology, chemistry, and engineering are blended with an aim to improve the quality of human life. It also improves the technological advancements in many fields. It was this that made Foram take the Rubber Technology field during her undergraduate studies at L.D. College of Engineering, Ahmedabad, Gujarat, India (2009-2013). Foram’s Bachelor of Engineering thesis was based on the “Development of Pneumatic Rubber Coated Fabric Diaphragm”.

To deepen her knowledge in polymers, she pursued master studies in Polymer Science and Technology from the Indian Institute of Technology, Delhi (2014-2016). Her master thesis was about microbial degradation of the blends, where functionalized poly (lactic acid) was blended with poly (acetic acid). These blends are used for various biomedical applications such as regeneration and repair of bone and cartilage tissue.

Foram is deeply interested in Polymer Science as a lifelong career. She was recruited by Robert Bosch Engineering and Business Solutions Pvt. Ltd. in the automotive electronics department as a Senior Engineer (2016-2018). Dealing with sealants, thermal interface material, conformal coatings, and potting of an electronic control unit in the automobile sector. Gradually, she developed a strong ability to perform as an independent researcher as well as a team player.

Foram started her PhD at IT Sligo (Department of Mechanical and Manufacturing Engineering) in September 2018 under Dr David Tormey (Engineering) and Dr Richard Sherlock (Science). Her research topic is “Laser Transmission Welding of Semi-crystalline Polymers and its Composites”. It is an industrial based project along with Abbott diagnostics.

Laser Transmission welding (LTW) of polymers is a technique that is used to join polymeric components of varying thickness and configuration using laser sources such as a diode, Nd: YAG, CO2, etc. They are widely used in industries like automotive, microelectronics, aerospace, medical, packaging, optoelectronics, microsystems, etc. This technique requires one part to be transmissive to a laser beam and the other part to be absorptive to the beam as shown in Figure 1. The two parts are put under pressure while the laser beam moves along the joining line with defined parameters such as power, scanning speed, spot diameter, etc. resulting in diffusion of the two melted surfaces. The key advantages of LTW considering the industrial prospective are the reproducibility of the process due to no wear and tear of the tool and increase in productivity with better quality. It is a non-contact, flexible, and easily controllable process with almost no contaminations. Through laser, a localized and narrow heat zone can be created. However, there are various investigations still going on in this field.

Figure 1. Schematic diagram of Laser Transmission Welding (LTW) of plastic

The specific objectives of the present work are the systematic study on the effect of Carbon Black(CB) and laser welding parameters on the thermal, morphological, mechanical, and optical properties of the welded polymer samples during diode laser transmission welding of poly(propylene) (PP). Various polymer characterising techniques (DSC, TGA, FT-IR, SEM, XRD, UTM, etc.) will be utilised for the pre- and post-welded samples of PP composites.

Other objectives are:

  • Understand the phenomenon of inter-diffusion and melting of the semi-crystalline polymers
  • Determine whether the processing conditions of injection moulded samples significantly influence the key properties of the laser-welded samples of PP and its composites
  • Optimising the laser parameters (laser power, scanning speed, and clamping pressure) and dosage of CB for good weld quality
  • Analysis of variance (ANOVA) method will be utilised to find the statistical significance of the laser operating parameter(s) and CB.
  • The present work aims to eliminate the issues faced by the industry during the laser welding process and improve productivity by scrap rate reduction and improving the weld quality.

LTW opens novel product layouts with assured weld quality. When tool cost, consumable cost, and expenses with respect to wear and tear are considered, LTW scores to be an economical technique of joining parts which are compatible with automation. The project-specific cost seems to be one third lower due to a high degree of system flexibility and integrated process control. The parts are joined within seconds without the application of any joining agent. Moreover, it does not involve post-processing like curing, finishing, etc. which saves time, workforce, and post-processing equipment expenditure. This allows designers and manufacturers to recommend LTW as an emerging technology for joining complex geometries.

To understand and learn about laser processing and become familiar with polymer characterisation techniques, initial trials were carried out using a CO2 laser on poly (lactic acid) (PLA). A conference paper presented in the 17th International Conference on Manufacturing Research ICMR 2019 based on the “Bulk modification of poly (lactic acid) by CO2 laser radiations” which has been published in Advances in Manufacturing Technology XXXIII (doi:10.3233/ATDE190065). Foram also received an opportunity to present her work on “Laser Transmission Welding of Polymers & its Composites” in IMC:36-Irish Manufacturing Conference at Trinity College, Dublin.

The project is a cross-border collaboration along with ulster university, Jordanstown and NIACE, Advanced Composites and Engineering, Belfast. It is EU INTERREG V funded project with academic partners North West Centre for Advanced Manufacturing (NWCAM).

Eighteen months of Foram’s research has been at IT Sligo. The professors, supervisors, and all the staff members have been extremely helpful and always motivating Foram to grow further and have her own ideas for implementation. Foram feels’ that such encouragement is exceedingly rare. Together with the sound academic foundation and industrial experience, she wishes to achieve her ultimate goal of doing research in Polymers and pursue a PhD degree.

This blog was first published on the PEM website